& ChatGPT

Automatisation des réponses aux commentaires
Facebook Ads avec Make (Integromat) et
ChatGPT

1. Connexion a Facebook via Make : Création de l'application et
tokens

Pour commencer, vous devez créer une application Facebook sur le portail développeur de Meta
(developers.facebook.com) et I'intégrer avec Make. Sur la plateforme développeur, créez une nouvelle
application Facebook (choisissez un type approprié, par ex. “Entreprise”). Ajoutez les produits Graph
API et Webhooks a cette application ' . Dans Graph API, configurez les permissions nécessaires : au
minimum pages_manage_engagement, pages_manage_posts, pages_read_user_content,
pages_read_engagement (pour lire les commentaires et publier au nom de la Page) 2 3 . Pour

pouvoir envoyer des messages privés (Messenger), ajoutez également la permission pages_messaging
4

Une fois l'application créée, générez un jeton d'accés utilisateur via le flux OAuth2 (ou via Graph API
Explorer) incluant ces permissions, puis obtenez un jeton d'accés Page associé a votre page Facebook
cible. Le jeton de Page s'obtient en appelant I'endpoint | /{page-id}?fields=access_token avec le
jeton utilisateur 5 . Assurez-vous que le jeton de Page obtenu posséde bien toutes les permissions
requises (vous pouvez vérifier via | GET /me/permissions) et qu'il n'expire pas immédiatement. Un
jeton de Page issu d'un utilisateur authentifié peut étre de longue durée (jusqu'a 60 jours par défaut)

6 . Pour un usage pérenne, pensez a mettre en place le flux de renouvellement : utilisez 'OAuth2 de
Make ou le Graph API pour échanger un jeton court contre un jeton long
(grant_type=fb_exchange_token) et répétez avant expiration. Dans Make, vous pouvez configurer une
Connexion OAuth2 personnalisée avec 'URL d’autorisation Facebook
(https://www.facebook.com/v16.0/dialog/oauth), I'URL de jeton (https://
graph.facebook.com/v16.0/0auth/access_token), votre App ID et App Secret, ainsi que les
scopes (permissions) listés ci-dessus 7 8 . Cela permettra a Make de gérer automatiquement
l'obtention et le rafraichissement du token (note: Facebook ne fournit pas de refresh token classique, le
renouvellement se fait en régénérant un jeton long durée). Veillez a bien enregistrer votre App ID et
Secret de maniére sécurisée (Make les stocke chiffrés si vous les renseignez dans une connexion
OAuth2).

En paralléle, configurez le produit Webhooks de l'app Facebook. Renseignez une URL de callback
HTTPS (Make peut en fournir une, voir section Déclencheur) et un jeton de vérification arbitraire pour
la validation du webhook 9 . Abonnez l'application aux événements Page relatifs aux commentaires :
dans les abonnements Webhooks, sélectionnez l'objet “page” et cochez les champs feed et comments

10 . Enfin, passez l'application en mode “Live” (et hors bac a sable) une fois testée, afin que les tokens
de Page n'expirent pas et que les webhooks fonctionnent avec les utilisateurs non administrateurs. &
Important : Si votre application demande des permissions sensibles (ex: pages_messaging), vous
devrez passer par le processus de App Review de Meta. Fournissez une description claire de l'utilisation
(ex: réponse automatique aux commentaires) et une politique de confidentialité sur votre site web,

https://chatgpt.com/?utm_src=deep-research-pdf
https://chatgpt.com/?utm_src=deep-research-pdf
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,com
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=faut%20cr%C3%A9er%20une%20application%20Facebook,authentifi%C3%A9%20doit%20%C3%AAtre%20admin%20ou
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Tokens%20d%E2%80%99acc%C3%A8s%20Facebook%C2%A0%20%3A%20En,ou%20des%20connexions%20partag%C3%A9es%20de
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=match%20at%20L445%20pages_messaging%20Graph,API
https://stackoverflow.com/questions/57441427/send-private-replies-keep-asking-for-pages-messaging-while-my-token-already-have#:~:text=%27GET%27%2C%20%27%2FpageID%3Ffields%3Daccess_token%27%2C%20array,access_token
file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=,expires%20%E2%86%92%20page%20token%20also
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,https%3A%2F%2Fwww.make.com%2Foauth%2Fcallback%2Fmeta
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,body.access_token
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2,API%2C%20Webhooks
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,subscribe

puis soumettez les permissions pour examen 11 12 . Une fois approuvée, votre app pourra étre
utilisée en production avec tous les utilisateurs de votre page.

2. Déclencheur d’'automatisation : surveiller les commentaires
des publicités

Pour répondre dés qu'un commentaire est posté sous vos publicités Facebook, il faut mettre en place
un déclencheur en temps réel ou quasi temps réel dans Make. Deux approches sont possibles :

* Via Webhook (temps réel) : en utilisant le webhook configuré dans l'application Facebook, vous
pouvez recevoir instantanément les événements de nouveaux commentaires. Dans Make,
utilisez un module de type Webhooks > Custom webhook pour obtenir une URL unique (Make
fournira une URL https://hook.make.com/...). Entrez cette URL et le jeton de vérification
correspondants dans la configuration Webhooks de votre app Facebook (comme callback pour
l'objet Page). Une fois la validation faite (Facebook enverra un challenge que Make renverra
automatiquement si vous avez fourni le bon token), votre scénario Make recevra une payload a
chaque nouveau commentaire sur la Page 13 . Il faudra ensuite filtrer ces événements pour ne
traiter que ceux provenant de publications sponsorisées (voir plus bas).

Via Polling (périodique) : si l'option webhook n'est pas possible, utilisez le module Facebook
Pages - Watch Comments de Make (ou un module HTTP Graph API équivalent) pour interroger
régulierement les nouveaux commentaires. Limitation : le module natif Watch Comments de
Make nécessite de spécifier un ID de post précis a surveiller 4 . Si vous avez de nombreuses
publicités actives, vous devrez soit créer un scénario par post publicitaire majeur, soit concevoir
un scénario unique qui liste les posts publicitaires puis leurs commentaires. Par exemple, un
module HTTP pourrait d'abord lister les posts de la page ou les publicités actives, puis boucler
sur chacun pour récupérer les commentaires récents. Cette approche demande d'enregistrer
I'horodatage du dernier commentaire traité afin de ne pas relire les anciens a chaque cycle.
Vous pouvez utiliser 'opérateur since | ou stocker la date du dernier commentaire vu.

Identifier les posts “Ads” (dark posts) : Vos publicités Facebook sont généralement des Page Post Ads,
c'est-a-dire des posts de Page non publiés (aussi appelés dark posts). Ils n'apparaissent pas sur le fil
public de la Page, ce qui complique leur détection. Pour les cibler exclusivement et exclure les posts
organiques classiques, plusieurs stratégies complémentaires sont recommandées :

* Par liste d'ID : Récupérez I'ID des posts associés a vos publicités et traitez uniquement ceux-ci.
Lorsque vous créez une pub, Facebook génére un post caché dont I'ID peut étre obtenu via I'API
Marketing. En interrogeant lendpoint de [I'Ad Creative (/v16.0/{ad_creative_id}?
fields=object_story_id,effective_object_story_id), vous obtenez I'ID du post sous-
jacent méme si object_story_id est nul dans certains cas 5. Ces IDs de posts
“sponsorisés” pourront étre stockés (par ex. dans un Data Store ou table) et le scénario ne
traitera que les commentaires dont le post_id correspond a l'un de ces IDs.

+Via l'attribut de publication : Un dark post a en général is_published=false . Si vous
recevez un commentaire via le webhook, vous pouvez faire un appel Graph API pour vérifier
l'attribut is_published du post parent. S'il est | false , cela indique un post non publié (donc
probablement une publicité) 16 . De méme, un champ |promotion_status du post peut
indiquer s'il s'agit d'un contenu sponsorisé. Cette vérification additionnelle peut filtrer les
commentaires organiques restants.

file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=Step%202%3A%20Submit%20App%20for,Review
file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=Meta%20evaluates%3A%201,2%E2%80%935%20days
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=sp%C3%A9cifier%20la%20page%20et%20%C3%A9ventuellement,ayant%20son%20module%20Watch%20Comments
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=%F0%9F%91%89%20Je%20veux%20une%20m%C3%A9thode,%E2%86%92%20le%20post%20source
https://developers.facebook.com/community/threads/372511200112891/#:~:text=Developers%20developers,Unbelievable

*Via la source de I'événement : Les payloads de webhook pour commentaires incluent I'ID du
post et parfois des informations de contexte. Si votre application a accés aux données Ads, il est
possible que le champ | effective_object_story_id soit fourni dans certaines notifications.
Cependant, par prudence, il est plus fiable de recouper avec les méthodes ci-dessus.

En résumé, configurez votre déclencheur Make pour surveiller les nouveaux commentaires soit via
un webhook (idéal pour la réactivité) soit via un polling fréquent (ex. toutes les 5 minutes). Aprés
réception d'un commentaire, vérifiez que I'ID du post associé correspond a une publicité (dark post)
afin de passer a I'étape de traitement uniquement pour ces cas pertinents. Cette logique d’exclusion
empéche l'agent de répondre aux commentaires laissés sur vos publications classiques non-
sponsorisées.

Exemple: Vous pouvez structurer le scénario Make ainsi : module Webhook entrant -> module JSON/
variable pour extraire I'ID du post du commentaire -> module HTTP Get Post (GET /{post-id}?
fields=is_published, created_time) -> filtre sur is_published=false pour ne garder que les
posts non publiés (pubs) 17 -> puis continuer vers la génération de réponse (section suivante).

3. Détection et prévention des doublons

Il est crucial d'éviter de répondre deux fois au méme commentaire, ce qui pourrait étre percu comme
du spam ou une erreur. Pour cela, implémentez un mécanisme d'idempotence qui garde la trace des
commentaires déja traités.

La méthode la plus simple sur Make est d'utiliser un Data Store (base de données interne) pour stocker
un identifiant unique de chaque commentaire répondu. Par exemple, créez un Data Store nommé
processed_comments avec des champs comme IID du commentaire, IID du post, un hash de
contenu, la date de traitement, etc. '8 . Lorsque votre scénario re¢oit un nouveau commentaire,
générez un identifiant unique - par exemple un hash SHA-256 combinant le comment_id et le texte
du commentaire (ou ses 100 premiers caracteres) 1° . Recherchez ce hash dans le Data Store : s'il existe
déja, cela signifie que le commentaire a été traité précédemment, et le scénario doit alors court-
circuiter la réponse (ne pas répondre une seconde fois). S'il n'existe pas, ajoutez-le au Data Store une
fois le traitement effectué.

Cette approche assure que méme si un commentaire est recu deux fois (cas rare mais possible avec un
trigger webhook mal configuré ou un re-run du scénario), une seule réponse sera publiée 20 . Vous
pouvez aussi stocker directement les ' comment_id | traités, mais 'usage d'un hash permet de combiner
plusieurs éléments (par ex., différencier deux commentaires de deux posts différents qui auraient par
hasard le méme ID numérique).

Alternativement, si vous préférez un stockage externe, vous pourriez enregistrer les IDs dans une
Google Sheet ou une base de données SQL via les connecteurs Make. Limportant est qu'avant de
générer la réponse, le scénario vérifie l'unicité du commentaire entrant. Le cas échéant, utilisez un
module “filter” ou un module Router avec condition pour ignorer les commentaires déja vus. Une
ressource de la communauté Make suggére d’insérer un filtre juste apreés le trigger pour ignorer les
commentaires dont lauteur est la Page elle-méme (afin déviter de répondre a vos propres
commentaires ou aux réponses déja postées par l'agent) 21 22 - c’est un autre aspect de la prévention
des boucles infinies.

Conseil : Si vous utilisez le polling (Watch Comments), configurez-le “a partir de maintenant” lors du
premier déploiement (option Choose where to start: From now on) pour éviter que le scénario ne traite

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,Store%20table%20processed_comments
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2.%20%E2%9C%85%20Impl%C3%A9menter%20SHA,generation
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=%C3%89viter%20les%20boucles%20sur%20vos,le%20%20sc%C3%A9nario%20%20ne
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=communaut%C3%A9%20Make%20souligne%20cette%20n%C3%A9cessit%C3%A9,la%20collecte%20des%20commentaires

tous les anciens commentaires historiques d'un coup 23 . Cela évite un déluge de réponses indésirables
au démarrage. Ensuite, la logique de déduplication se charge d'éviter les doublons dans la durée.

4. Réponse intelligente via ChatGPT (OpenAl)

Une fois un nouveau commentaire éligible identifié, la prochaine étape est de générer une réponse
appropriée de maniére automatisée en s'appuyant sur un modéle d’IA. Dans ce cas, on utilisera I'API
OpenAl (GPT-3.5/GPT-4) via Make pour produire un texte de réponse intelligent et contextuel.

Intégration OpenAl dans Make : Make propose un module natif OpenAl (ChatGPT) - Create a
completion qui facilite 'appel a I'API sans script. Configurez une connexion en fournissant votre clé API
secréte OpenAl (stockée de facon sécurisée par Make). Dans le module Create a completion, vous
spécifiez le modele (ex : gpt-3.5-turbo | pour un bon rapport colt/vitesse, ou gpt-4 | pour des
réponses plus élaborées), ainsi que le prompt a envoyer et les paramétres (température, nombre
maximal de tokens de réponse, etc.) 24 . Alternativement, vous pouvez utiliser un module HTTP pour
appeler directement l'endpoint ChatGPT (https://api.openai.com/v1/chat/completions), ce
qui offre plus de contréle sur le format (dans ce cas envoyez un JSON avec la liste des messages).

Prompt contextuel : La clé d'une bonne réponse automatique est de bien rédiger le prompt envoyé a
I'TA 25 . 1l doit inclure : - Un role clair pour I'IA : Par exemple, indiquez en contexte systéme quelque
chose comme « Tu es lassistant virtuel de la page Facebook d‘une entreprise X spécialisée en ___ ». Cela
cadre I'TA dans son réle de community manager virtuel. - Des consignes de style : Précisez le ton et la
longueur attendus. Par exemple « Réponds de facon courtoise, amicale et concise (1 a 2 phrases maximum)
en tutoyant l'utilisateur. » 26 . Cela garantit une cohérence avec la voix de marque et évite des réponses
trop longues. - Le contexte marketing spécifique : Fournissez a I'lA les informations dont elle a besoin
pour répondre correctement. Si le post publicitaire met en avant un produit ou une offre (prix,
caractéristiques, dates, etc.), incluez ces éléments. Par exemple : « Contexte : La pub présente un voyage
aux Maldives a 1000€ par personne en juillet. Commentaire utilisateur : "[texte du commentaire]". Donne une
réponse en tenant compte de ce contexte. » 27 . Ainsi, si l'utilisateur demande « Quel est le prix ? », 1A
saura qu'il faut répondre « Le prix est de 1000€ par personne... » au lieu de dire qu'elle ne sait pas. - Une
structure claire : Vous pouvez structurer le prompt en séparant les parties. Par ex : “Contexte : ...
Commentaire : ... Instruction : ...". Terminez par quelque chose comme « Réponse : » pour indiquer que
I'TA doit fournir la suite 28 . Cela la pousse a formater uniquement la réponse.

N'hésitez pas a personnaliser la réponse avec le prénom de la personne si possible, pour un effet plus
humain. Le prénom du commentateur peut parfois é&tre récupéré (via le champ from.name du
commentaire). Si vous l'avez, ajoutez dans le prompt utilisateur : « Le prénom de lutilisateur est __.
Intégre-le dans la réponse. ». Par exemple : « Bonjour Marie, ... ». Veillez a utiliser uniquement le prénom
pour la confidentialité 29 .

Exemple de prompt complet :

Systéme : "Tu es un assistant virtuel qui répond aux commentaires sur la page
Facebook de [Votre Entreprise], dans un style amical et professionnel."
Utilisateur : "Contexte : [Résumé du contenu de la pub, ex: offre spéciale,
prix, etc.].

Commentaire : \"[texte du commentaire de 1l'utilisateur]\".

Consigne : Réponds de maniére utile, aimable et concise en 1 a 2 phrases, en

file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=module%20de%20type%20Polling%20,votre%20agent%20de%20commentaires%20historiques
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Module%20OpenAI%20%E2%80%93%20Create%20a,3.5%20est%20plus%20rapide
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=La%20qualit%C3%A9%20du%20prompt%20envoy%C3%A9,optimis%C3%A9%20pour%20ce%20cas%20d%E2%80%99usage
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Inclure%20%20des%20%20consignes,de%20langage%20et%20la%20bri%C3%A8vet%C3%A9
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=contient%20des%20informations%20%20,au%20lieu%20de%20dire%20qu%E2%80%99il
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Exemples%20de%20prompt%C2%A0%3A
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Personnalisation%C2%A0%20%3A%20%20Demandez%20,convivial%20sans%20%C3%AAtre%20trop%20formel

tutoyant l'utilisateur et en reflétant le ton de notre marque. Termine par un
emoji pertinent si approprié."

Ce prompt en plusieurs parties donne a ChatGPT tout le nécessaire pour produire une réponse ciblée.
Vous pouvez ajuster la consigne pour, par exemple, “ne pas faire de promesses excessives ni d'informations
non confirmées” 30 afin d'éviter des dérapages marketing.

Génération de la réponse : Le module OpenAl retournera le texte proposé par I'TA. Avant de le publier
directement, vous pouvez prévoir une étape de modération optionnelle : par exemple, utiliser un
autre filtre d’Al pour détecter si la réponse contient un mot interdit, ou mettre en place un systéeme ou
les réponses sont stockées en brouillon pour validation humaine (selon vos besoins de controle qualité).
Toutefois, cela complexifie le flux - dans un scénario pleinement automatique, on publiera la réponse
immédiatement. Assurez-vous simplement que le prompt est bien congu pour réduire les risques de
réponses inappropriées.

En suivant ces principes, chaque nouveau commentaire entrant déclenchera l'envoi du texte a
ChatGPT (avec votre pré-prompt contextuel) et obtiendra une réponse personnalisée préte a étre
publiée. Les tests montrent qu'une IA bien paramétrée peut considérablement faire gagner du temps
tout en maintenant un ton cohérent avec la marque 37 .

5. Bascule en message privé (Messenger) pour certains mots-clés

Dans certains cas, vous préfererez répondre a l'utilisateur en privé (message Messenger) plutdt qu'en
public sous le commentaire. Par exemple, si le commentaire contient un mot-clé comme “prix” ou “devis”
indiquant une demande d'informations sensibles, ou “rdv”/“contact” suggérant que la conversation doit
continuer en privé, il est pertinent d'envoyer un message direct. Voici comment implémenter cette
bascule :

Détection de mot-clé : Aprés avoir recu le commentaire (et éventuellement avant ou aprés la
génération de la réponse Al), insérez un module de type Router ou un filtre dans Make. Ce filtre
vérifiera le contenu du commentaire (message du commentaire) pour des mots ou expressions
spécifiques. Par exemple : si text CONTAINS "prix" OU text CONTAINS "message privé" OU
text CONTAINS "contact" etc. Vous pouvez utiliser des expressions réguliéres pour capter des
variantes (majuscules, accents). Si un mot-clé déclencheur est trouvé, orientez le flux vers la branche
“Réponse en privé”, sinon vers la branche “Réponse publique”.

Envoi du message privé : Make dispose d'un module Facebook Messenger - Send a message, mais il
est parfois plus flexible d'utiliser un module HTTP pour appeler I'API Graph correspondante. Le Graph
API permet d'envoyer un Private Reply a la personne qui a commenté. L'endpoint a utiliser est | POST /
{PAGE_ID}/messages avec un payload contenant 'ID du commentaire d'origine. Par exemple :

[ttlps]: //graph.facebook.com/v16.0/{PAGE_ID}/messages?
access_token={PAGE_ACCESS_TOKEN}
{
"recipient”: {"comment_id": "<ID_du_commentaire>"},
"message": {"text": "<Votre réponse en privé>"}

file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=%C2%AB%C2%A0Le%20commentaire%20suivant%20a%20%C3%A9t%C3%A9,R%C3%A9ponse%20%3A%C2%A0%C2%BB
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Bonnes%20pratiques%C2%A0%3A%20Facebook%20peut%20%C3%AAtre,Par

Ce format indique a Facebook : « envoyer ce message en DM a l'auteur du commentaire spécifié ».
Assurez-vous d'utiliser le Page Access Token de votre page pour l'authentification, et que ce token
inclut bien la permission pages_messaging (sinon I'API renverra une erreur de type (#230) Requires
pages_messaging permission). Lutilisateur qui initie la requéte doit aussi avoir le droit “Envoyer des
messages” sur la Page (réle d'admin/modérateur par exemple) 32 . Avec Make, vous pouvez configurer
un module HTTP de cette maniére ou utiliser le module Messenger en remplissant les champs
équivalents (ID de destinataire = ID du commentaire, message texte = texte préparé).

Combiner réponse publique et privée : Selon vos besoins, vous pouvez choisir de poster a la fois une
réponse publique sous le commentaire ET un message privé, ou seulement le privé. Une pratique
courante est de faire les deux : par exemple, si quelgqu'un demande « Je veux plus d'infos sur le prix »,
votre agent peut répondre en public « Bonjour, je vous réponds en message privé » et simultanément
envoyer le détail en privé. Pour ce faire, générez deux contenus de réponse différents : l'un pour le
commentaire public (annongant le DM envoyé), l'autre pour le DM (contenant les informations
demandées plus en détail). Utilisez un module Create Comment pour la réponse publique et un
module Send Message pour le privé, tous deux alimentés par le texte venant de I'Al ou de templates.
Veillez a ce que le flux logique ne crée pas de confusion : par ex., n'‘envoyez pas deux fois la méme info.

Limitations Messenger a respecter : Facebook impose une régle stricte : un seul message privé autorisé
par commentaire. Cela signifie que vous ne pouvez pas entamer une longue conversation non sollicitée -
juste faire une réponse initiale en DM suite au commentaire 33 . De plus, ce message doit étre envoyé
dans les 7 jours suivant le commentaire 34 (au-dela, la fenétre d'autorisation se ferme). Intégrez cette
contrainte dans votre scénario : idéalement le message privé part immédiatement aprés la détection du
mot-clé. N'essayez pas de renvoyer un second DM plus tard sans action de l'utilisateur, cela violerait les
politiques. Par ailleurs, n'envoyez que des contenus conformes (évitez toute utilisation non sollicitée des
informations de l'utilisateur).

Enfin, assurez-vous de tester la voie “Messenger” avec un compte test : en mode développement de
I'app, seuls les testeurs/admin recevront les messages. Une fois I'app en production validée par Meta,
vos vrais clients recevront ces réponses privées. Résumé technique : la branche Messenger de votre
scénario comprendra un appel a | /{PAGE_ID}/messages (ou module Make dédié) 35 avec le bon
payload, et nécessitera les permissions Messenger appropriées 36 .

6. Publication de la réponse (commentaire public vs DM)

Aprés génération du contenu de la réponse par I'TA et choix du canal (public ou privé), il faut
effectivement publier la réponse via 'API Facebook.

Répondre en commentaire public : Pour publier un commentaire en réponse sur Facebook via I'API
Graph, deux options existent : - En réponse directe a un commentaire spécifique (sous-commentaire)
- recommandé pour répondre a un commentaire utilisateur précis afin que celui-ci recoive une
notification. Cela s'effectue en faisant un POST sur l'endpoint /{comment-id}/comments . Le
comment-id | est I'ID du commentaire initial de l'utilisateur. La requéte Graph sera : POST /
<COMMENT_ID>/comments?message=<votre texte>&access_token=<PAGE_TOKEN> . En Make, le
module Facebook Pages - Create a Comment peut étre utilisé : il suffit de fournir I'ID du commentaire
cible et le texte de la réponse, le module se chargera d'appeler cet endpoint. Le résultat sera un
nouveau commentaire publié au nom de la Page, imbriqué sous le commentaire de l'utilisateur 37 .- En
commentaire du post (nouveau fil) - moins courant dans ce cas d'usage, mais équivalent a poster un
commentaire normal sur la publication elle-méme. Endpoint : POST /{post-id}/comments . Cela
poste un commentaire de la Page sur son propre post. Ce n'est pas adressé directement a l'utilisateur,

https://developers.facebook.com/docs/messenger-platform/discovery/private-replies/#:~:text=Developers%20developers,pages_messaging%20permission%3B%20The%20ID
https://respond.io/help/instagram/instagram-auto-private-replies#:~:text=Limitation
https://respond.io/help/instagram/instagram-auto-private-replies#:~:text=Only%20one%20private%20message%20can,be%20sent%20per%20comment
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=GET%20%2F
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Facebook%20Messenger%C2%A0%3A%20Si%20vous%20souhaitez,de%20l%E2%80%99utilisateur%20et%20avoir%20les
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=,publi%C3%A9%20au%20nom%20de%20la

donc il ne recevra pas forcément de notification, a moins de le mentionner. On utilisera plutot cette
méthode pour des réponses générales ou si 'on veut éviter de ping l'utilisateur. Dans Make, ce serait
aussi via Create a Comment en spécifiant I'ID du post comme cible.

Dans notre scénario, on privilégiera la réponse directe au commentaire (comment-id/comments |
pour s'assurer que l'utilisateur voit la réponse dans la conversation du post. Exemple : un utilisateur
commente “Quel est le prix ?” sur votre pub ayant I'ID de commentaire | 12345_67890 . Votre module
Create a Comment ciblera I'ID | 12345_67890 | et publiera : « Bonjour! Le prix est de 1000€ par personne,
toutes les infos sont envoyées en MP » (si vous combinez avec un MP) ou juste « Bonjour! Le prix est de
1000€ par personne. Voici le lien vers la fiche détaillée... » en public 33 37 . La réponse apparaitra
immédiatement sous le commentaire de l'utilisateur, avec le nom de votre Page.

Envoyer la réponse en message privé : Comme décrit en section 5, l'envoi se fait via | /{PAGE_ID}/
messages . En Make, soit via le module Messenger, soit via un module HTTP configuré. Il faut inclure
dans la requéte |e texte généré par I'1A (ou un texte alternatif formaté pour un message privé plus long
si besoin). A noter : Le message privé ne peut pas contenir certains types de contenus si votre app n'est
pas approuvée pour (par ex., des liens courts non conformes, ou du contenu media non hébergé
correctement). Respectez les guidelines de Messenger Platform. Un message textuel simple,
éventuellement avec un lien vers votre site ou un document, passera généralement. Le format JSON
montré plus haut suffit pour du texte. Si vous voulez envoyer une image ou un bouton, il faudrait
utiliser un attachement (non requis ici a priori).

Vérifications avant publication : - Si la réponse contient un lien, assurez-vous que I'URL est correcte et
éventuellement suivie d’un paramétre de tracking UTM pour mesurer l'engagement. - Evitez les
réponses identiques copiées-collées : méme si c'est I'IA qui les génére, il peut y avoir des similitudes.
Pensez a intégrer de la variété (synonymes, emojis, prénom) pour que Facebook ne voie pas 100
commentaires identiques qui pourraient étre confondus avec du spam 31 . - Respectez un léger délai
entre la détection du commentaire et la publication de la réponse (par ex. 2-3 secondes) si possible,
pour simuler un temps de saisie humaine et éviter de répondre instantanément a la milliseconde preés

a chaque fois. Cela peut étre fait en insérant un module Sleep (Pause) de quelques secondes dans Make
39 |

Une fois le module de publication exécuté, surveillez la réponse de I'API. En cas de succés, vous
obtiendrez I'ID du nouveau commentaire ou un résultat OK. En cas d'erreur, traitez-la comme indiqué ci-
dessous (ex: quota atteint, token expiré, etc.).

En somme, cette étape finale concrétise 'automatisation : le commentaire de réponse est posté sur
Facebook ou envoyé en DM en utilisant les bons endpoints Graph API via Make. Le tout se fait de
facon transparente pour l'utilisateur final, qui voit simplement la Page lui répondre “comme par magie”
en quelques secondes.

7. Gestion des erreurs, quotas et limitations (anti-spam)

Lors de la mise en place d'une automatisation a grande échelle, il est crucial de gérer proprement les
erreurs et de connaitre les limites imposées par les API, afin d'éviter les interruptions de service ou les
sanctions (blocage pour spam). Voici les points d'attention et comment les aborder :

Gestion des erreurs API dans Make : Chaque module Make (Facebook, OpenAl, etc.) possede des
paramétres de gestion d'erreur. Par défaut, une erreur stoppe le scénario. Vous pouvez configurer des
retries automatiques : par exemple, sur le module de publication Facebook, définissez “Essayer a

file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=placeholders%20%20%28par%20%20ex,Par
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=,publi%C3%A9%20au%20nom%20de%20la
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Bonnes%20pratiques%C2%A0%3A%20Facebook%20peut%20%C3%AAtre,Par
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Temporisation%20,les%20r%C3%A9ponses%20un%20peu%20moins

nouveau 2 fois” avec un intervalle exponentiel (ex: attendre 5 min puis 15 min) en cas d'erreur
temporaire 40 . De plus, prévoyez des routes de secours : si 'appel OpenAl échoue (réseau ou quota
atteint), la route alternative pourrait envoyer une réponse prédéfinie du style « Désolé, un imprévu
technique m'empéche de répondre tout de suite. » ou notifier un administrateur. De méme, si la publication
du commentaire échoue (erreur Graph API), captez le message d'erreur et loggez-le (dans une feuille ou
via une notification Slack/Email) pour intervention manuelle 41 .

Quotas de I'API OpenAlI : Surveillez votre consommation pour éviter de dépasser votre crédit (surtout
avec GPT-4 qui est colteux). Make compte chaque appel OpenAl comme une opération, attention aux
limites de votre abonnement Make (1000 opérations/mois sur le plan gratuit) 42 . Si le volume de
commentaires est élevé, envisagez un plan supérieur ou optimisez : par exemple, n‘appelez pas I'API Al
pour des commentaires qui n‘en valent pas la peine. Vous pouvez filtrer en amont les commentaires
du type “€y” ou “Ok” qui nappellent pas de réponse élaborée 43 . Cela réduit les appels inutiles.

Rate limiting de I'API Facebook : Facebook Graph API impose des limites de taux de requétes par
heure et par jour. Pour une page modérément active, vous ne devriez pas les atteindre si vous
interrogez toutes les quelques minutes et postez en réponse. Toutefois, si vous devez lister de
nombreux posts et commentaires en boucle, le nombre de requétes peut monter vite. Utilisez toujours
les parametres de pagination et de limite (ex: 1imit=50 dans vos requétes de liste de commentaires)
pour éviter de tout récupérer d'un coup 44 . Exploitez également les timestamps pour ne récupérer que
les nouveaux commentaires depuis la derniere exécution. Si un dépassement de quota survient, 'API
renverra une erreur 4XX (souvent code 17 ou 32 pour rate limit). Gérez-la en attendant puis
réessayant plus tard automatiquement. Vous pouvez, par exemple, attraper le code derreur dans la
réponse du module HTTP et faire un | sleep 60s avant retry. Make permet aussi un parametre global
“Throttle” pour n'envoyer qu'un certain nombre de requétes par seconde. Configurez-le si nécessaire.

Risque de spam et limitations qualitatives : Méme si vos réponses sont pertinentes, répondre de
facon identique ou trop rapide a tout peut déclencher les mécanismes anti-spam de Facebook. II est
recommandé de varier le contenu des réponses autant que possible 31 . Lutilisation de ChatGPT aide
en cela, mais assurez-vous que votre prompt encourage des différences (par ex, utiliser le prénom de
I'utilisateur, des tournures variées). Evitez d'inclure des liens & chaque réponse systématiquement -
intercalez des réponses purement textuelles lorsque possible, ou utilisez différents textes d'introduction
aux liens. De plus, respectez un délai raisonnable entre les réponses comme mentionné (quelques
secondes au moins) 45 . Facebook n‘aime pas voir 50 commentaires publiés en une seconde par une
Page. Un membre de la communauté Make souligne de ne pas faire de “burst” de réponses trop rapide
pour avoir I'air naturel 46 .

Permissions et expiration : Gardez un ceil sur I'état de vos tokens. Si le token d'accés expire ou est
révoqué (par ex. si I'administrateur change son mot de passe Facebook, ou si Meta détecte quelque
chose), vos appels échoueront (erreur OAuth). Pour anticiper, mettez en place une alerte si aucun
commentaire n'est traité sur une période anormale (par ex. 24h sans aucun nouveau commentaire
alors que d'habitude il y en a - cela pourrait indiquer un webhook inactif ou un token expiré) 47 . De
méme, si plusieurs erreurs consécutives surviennent (ex: 5 échecs d’API en 1 heure) 47 , notifiez un
admin pour qu'il vérifie le token et les quotas.

En somme, prévoyez dés la conception : - Des retries sur erreurs transitoires, - Des notifications/logs
sur erreurs bloquantes, - Le respect des limites d'appels (pas de boucles infinies de requétes), - Une
pause entre les réponses pour rester humain, - Et la diversification du contenu pour ne pas étre
flaggué comme bot spammeur.

file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=API%20%20renvoie%20%20une,d%E2%80%99intervalle%20en%20cas%20d%E2%80%99%C3%A9chec%20temporaire
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=chemin%20de%20rattrapage%20en%20cas,des%20retries%20automatiques%20sur%20les
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=gratuit%20de%20Make%20limite%20aussi,%E2%80%9C%F0%9F%91%8D%E2%80%9D%20qui%20n%E2%80%99appellent%20pas%20de
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=le%20sc%C3%A9nario%20pour%20limiter%20les,les%20atteindre%20en%20mode%20polling
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Facebook%20%3A%20L%E2%80%99API%20Graph%20impose,depuis%20la
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Bonnes%20pratiques%C2%A0%3A%20Facebook%20peut%20%C3%AAtre,Par
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Temporisation%20,peut%20aussi%20rendre%20les%20r%C3%A9ponses
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=arrivent%20en%20m%C3%AAme%20temps%20%28p,courte%20pour%20ne%20pas%20ralentir
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4

En suivant ces précautions, votre automatisation sera robuste face aux imprévus et restera conforme
aux regles de la plateforme (minimisant les risques de bannissement de votre app ou de votre page).

8. Monitoring et journalisation des activités

Mettre en production un tel agent automatisé nécessite d’avoir de la visibilité sur ce qu'il fait. Il est
important de suivre les commentaires traités, les réponses envoyées et les éventuelles erreurs
survenues, tant pour analyser lefficacité que pour déboguer en cas de probleme. Voici quelques
méthodes de monitoring et logging a intégrer :

* Journal des commentaires traités : Conservez un log de chaque commentaire et de l'action
entreprise. Par exemple, créez une Google Sheet “FB Comments Log"” avec des colonnes : Date/
heure du commentaire, ID du post, ID du commentaire, Texte du commentaire, Intention
détectée (si vous faites une classification par I'Al, ex: question prix, demande RDV, spam, etc.),
Réponse générée, Canal de réponse (public ou privé), Statut (succes de la publication ou erreur),
Durée du traitement. A chaque itération du scénario, ajoutez une ligne dans cette sheet. Make
permet de remplir une Google Sheet via un module Google Sheets Add a Row. Ceci vous donnera
une trace historique consultable de toute l'activité de I'agent 48 . Alternativement, vous pouvez
utiliser un Make Data Store ou une base Airtable pour stocker ces informations si vous préférez
une base de données structurée.

Logs d'erreurs : En plus d'enregistrer les erreurs dans le log général ci-dessus, il peut étre utile
d’avoir des notifications en temps réel sur les erreurs critiques. Configurez par exemple un
module Slack ou Email qui s'exécute sur la route des erreurs (Make permet de diriger un
scénario vers un chemin “erreur” si un module échoue et n'est pas retenté). Le message pourrait
inclure le code derreur, l'action en cours (ex: "Erreur lors de lenvoi de réponse", ID du
commentaire), et I'heure. Ainsi vous étes proactif en cas de souci (token expiré, quota dépassé,
etc.). On peut aussi imaginer un récapitulatif quotidien envoyé par email avec le nombre de
commentaires traités, le nombre de réponses envoyées, le nombre d'erreurs survenues, etc. 47 .

Tableau de bord : Pour un suivi plus poussé, envisagez de brancher Make a un outil de
dashboarding (Datadog, Grafana via InfluxDB, etc.) ou méme Google Data Studio via Sheets. Des
métriques utiles : nombre de commentaires traités par heure/jour, taux de réussite des réponses
(combien publiées vs erreurs), temps moyen de réponse (du commentaire a la publication),
répartition des intentions (combien de questions prix, combien de demandes de contact, etc. si
classification faite), top 5 des mots-clés rencontrés, etc. Ces données aident a évaluer I'impact de
votre bot et a détecter des anomalies (ex: pic soudain de commentaires ou de messages privés
envoyes).

Monitoring du webhook : Si vous utilisez un webhook, utilisez un service comme Webhook:.site
ou Hookdeck pendant la phase de test pour voir les requétes recues, ou loggez dans Make
chaque payload brut recu (par ex, écrivez-le dans une Data Store temporaire) afin de vérifier que
tous les champs attendus sont la. Sur le long terme, un webhook ne nécessitera pas beaucoup
de maintenance, mais en cas de silence prolongé, vous saurez si c'est parce que plus aucun
commentaire n‘arrive ou parce qu'il y a un probléme technique.

Data Store pour état global : En plus des logs transactionnels, vous pouvez avoir un Data Store
qui garde des compteurs ou indicateurs : par ex, une entrée unique stats avec le nombre de
commentaires traités ce jour, ce mois, etc., mis a jour a chaque run. Cela peut faciliter I'envoi de
rapports sans relire toute la sheet.

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4

En résumé, ne laissez pas votre agent fonctionner en boite noire. Tracez toutes les actions pour
pouvoir expliquer chaque réponse envoyée (utile en cas de question de la part d'un collegue ou d'un
audit interne). Un monitoring actif vous permet aussi de repérer si I'agent répond a des cas qu'il ne
devrait pas (par ex, un commentaire inapproprié ou il vaudrait mieux qu'un humain intervienne). Vous
pourriez alors affiner vos filtres de déclenchement (par ex, ignorer les commentaires contenant des
insultes, en les laissant pour modération humaine).

Le suivi rapproché lors des premiers jours de lancement est particulierement important : examinez le
log de chaque réponse pour vérifier sa pertinence. Ensuite, établissez un rythme de revue (par ex. une
vérification hebdomadaire des logs ou un briefing mensuel des stats). Avec ces mesures en place, vous
aurez une confiance accrue dans votre automatisation et la capacité de 'améliorer continuellement.

9. Plan d'implémentation sur 7 jours

Mettre en place cette solution de maniére robuste peut étre étalé sur plusieurs jours. Voici un plan de
déploiement sur une semaine (7 jours) pour arriver a une version stable en production, en découpant
les taches clés jour par jour :

Jour 1 - Préparation et configuration initiale : (Environ 4h)

- Créez l'application Facebook sur le portail développeur. Ajoutez les produits Graph API et Webhooks
1 . Configurez les URL de redirection OAuth (pour Make) et 'URL de callback Webhook (pointant

vers un webhook Make) avec un token de vérification 9 . Validez le webhook (Facebook enverra un

hub.challenge que Make doit renvoyer automatiquement une fois configuré).

- Générez un Page Access Token pour votre page avec les permissions requises 49 . Testez ce token en

faisant quelques appels Graph API manuels (par ex. avec Graph API Explorer ou curl) pour s'assurer qu'il

peut lire les commentaires et poster des commentaires 50 . Par exemple :

- GET /{page-1id}/feed pour voir sivous récupérez la liste des posts,

- GET /{post-id}/comments sur un post test pour lire les commentaires,

- |POST /{post-id}/comments pour poster un commentaire de test (vérifiez qu'il apparait sur

Facebook).

- Préparez les ressources annexes : ouvrez un compte OpenAl et obtenez la clé API, créez un compte

Make (si ce n'est pas déja fait) et familiarisez-vous avec l'interface, créez un compte Cloudinary si vous

prévoyez d'envoyer des images (optionnel, non requis pour du texte pur).

- Livrables jour 1 : Application Facebook configurée (App ID/Secret notés), webhook Vérifié par

Facebook, token de Page fonctionnel testé 51 , clé OpenAl préte.

Jour 2 - Intégration Make.com & modules API : (~6h)

- Dans Make, créez un scénario et configurez la connexion Facebook. Idéalement, utilisez l'option
Custom OAuth2 pour lier votre propre app Facebook : renseignez I'App ID, le Secret, les scopes
(permissions) et 'URL d'authentification/jeton comme discuté en section 1. Autorisez votre compte
Facebook via ce connecteur (Make ouvrira une fenétre d'authentification OAuth). Vérifiez que Make a
bien stocké un token et que la connexion est active 7 8 .

- Ajoutez un module Webhooks (Custom) en tant que déclencheur du scénario. Copiez I'URL fournie
par Make, et configurez dans votre app Facebook cette URL dans Webhooks > Subscriptions pour l'objet
Page (si ce n'est pas fait) 9 . Effectuez un test en publiant un commentaire sur votre page (ou via I'API)
et voyez si Make recoit 'tvénement (module déclenché). Ajustez si nécessaire les champs abonnés (feed,
comments).

- Ajoutez un module HTTP - Get Comments pour, par exemple, aller récupérer les détails complets du
commentaire via Graph API. Par exemple GET /{post-id}/comments?
fields=id,message, from{name, id} | (le webhook peut vous donner directement le message et I'ID

10

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,com
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2,API%2C%20Webhooks
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=5,woff2%20recommand%C3%A9
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=7
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=curl%20
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,https%3A%2F%2Fwww.make.com%2Foauth%2Fcallback%2Fmeta
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,body.access_token
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2,API%2C%20Webhooks

de l'auteur, utilisez-le selon vos besoins). Ce module servira surtout pour la phase de tests si le webhook
ne fournit pas tout.

- Ajoutez un module OpenAl configuré avec votre clé et un test de prompt (par ex. envoyez un
commentaire de test “Bonjour, jaimerais en savoir plus.” et voyez si OpenAl retourne une réponse
plausible). Ajustez le prompt jusqu'a étre satisfait du ton.

- Ajoutez un module Facebook Pages - Create a Comment pour poster une réponse sur un post/
commentaire test. Utilisez I'ID d'un commentaire de test et un texte fixe pour vérifier que tout

fonctionne (vous remplacerez plus tard par la réponse Al).

- Tester chaque module individuellement : un GET comments sur un post connu, un POST comment,
un appel OpenAl Si possible, testez également l'envoi d'un message privé via un module HTTP :
POST /{page_id}/messages avec un comment_id test (vous pouvez créer un commentaire factice

depuis un autre compte pour tester la réponse privée).

- Implémentez la gestion d'erreur basique : par exemple, définissez sur les modules HTTP un
mécanisme breaker (stopper le scénario en cas d'erreur et passer a une route alternative ot un module
log l'erreur).

- Livrables jour 2 : Scénario Make connecté a Facebook (OAuth2 ok) 52 , modules HTTP pour GET/POST

commentaires et POST messages configurés et testés manuellement 53 , module OpenAl configuré et

testé, début de structure du scénario (webhook -> Al -> réponse).

Jour 3 - IA avancée et enrichissement des réponses : (~8h)
- Affinez le prompt envoyé a ChatGPT. Intégrez le contexte réel de vos publicités du moment. Par
exemple, si vous avez 3 offres principales, préparez 3 variantes de prompt ou un prompt adaptable.
Testez plusieurs commentaires types et examinez les réponses. Ajustez la tonalité, ajoutez
éventuellement des emojis ou la maniéere de formuler les prix, etc. (voir section 4).
- Mettez en place un systeme de préfiltrage ou classification (optionnel avancé) : si vous souhaitez
traiter différemment certains types de commentaires (ex: spam pur, insultes, hors sujet), vous pouvez
appeler une IA de classification ou utiliser les régles de modération Facebook. Par simplicité, vous
pouvez aussi gérer des mots-clés “spam” (ex: “http://” dans le commentaire pourrait signifier un spam
pub) et dans ce cas choisir de ne pas répondre ou de masquer le commentaire (Graph API permet
POST /{comment-id}?is_hidden=true pour masquer un commentaire) 54 . Ce jour-1a, décidez de
ces regles de modération automatique le cas échéant et implémentez-les.
- Intégrez des éléments dynamiques dans les réponses : par exemple le prénom de l'auteur (extrait via
Graph API | from.name), ou un lien vers un PDF de présentation. Assurez-vous que IIA les utilise
correctement (passez-les en parametres dans le prompt comme variables).
- (Optionnel) Si vous souhaitez enrichir la réponse avec des médias (images personnalisées, vidéos...),
c'est le moment de configurer cela. Par exemple, générer un lien dimage Cloudinary en fonction de la
question (mais ceci est un bonus complexe). Vous pourriez préparer des réponses types ou I'IA décide
d’inclure un lien spécifique (par ex. “Voici notre brochure : [lien]”).
- Test de bout en bout : Simulez un scénario complet sur un post test non public : publiez-y 4-5
commentaires variés (demande de prix, question générique, troll/spam, etc.). Laissez le scénario Make
tourner et observez : il devrait détecter chaque commentaire, générer une réponse Al, appliquer la
regle Messenger si mot-clé, poster la réponse publique ou privée. Vérifiez sur Facebook le résultat pour
chaque cas. Ajustez les détails en fonction (par ex., la réponse était trop longue ? Raccourcissez le
max_tokens ou la consigne).
- Livrables jour 3 : Prompt Al optimisé avec contexte, régles de filtrage/intention éventuellement en
place, test complet réussi sur plusieurs commentaires avec réponses adéquates. Echantillons de
réponses validés (peut-étre les faire relire par un humain pour qualité).

Jour 4 - Idempotence, stockage et améliorations robustesse : (~6h)
- Mettez en place le Data Store de déduplication (section 3). Créez le Data Store
processed_comments | avec les champs choisis (au moins comment_id ou un hash|) 18 . Intégrez

11

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Jour%202%20%3A%20Integration%20Make,6h
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=POST%20%2F
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,Store%20table%20processed_comments

dans le scénario un module Data Store - Get en tout début qui cherche I'ID du commentaire entrant. S'il
existe, faites un filtre pour arréter la (ou route alternative “déja traité” qui log puis termine). Sinon,
laissez continuer. Aprés la publication de la réponse, ajoutez un module Data Store - Add/Replace pour
enregistrer I'ID ou le hash du commentaire traité 9. Testez en simulant deux fois le méme
commentaire (vous pouvez rejouer manuellement une méme tache webhook) pour voir si le second
passage est ignoré correctement.

- Ajoutez la partie logging/monitoring de base : connectez le module Google Sheets et créez une
feuille de log. Renseignez-y par exemple : date du jour, comment_id, texte du commentaire, texte de la
réponse, type de réponse (public/privé), succes/échec. Branchez ce module a la fin du scénario (ou sur
les deux fins, succes et échec). Testez qu'une ligne s'ajoute bien pour un commentaire test.

- Renforcez la sécurité des clés : Assurez-vous que votre clé OpenAl n‘apparait nulle part en clair
(utilisez la connexion sécurisée Make). Pareil pour les tokens Facebook - ne les mettez pas en dur dans
des modules HTTP, utilisez la connexion OAuth2 de Make afin que les tokens soient injectés
automatiquement (ex: en mettant {{connection.meta_facebook.accessToken}} dans le champ
token des modules HTTP si nécessaire) 55 56 .

- Envisagez la gestion des exceptions : Par exemple, si I'API OpenAl renvoie une erreur pour un
commentaire (rare, mais possible si le contenu est non autorisé), décidez de l'action. Peut-étre envoyer
un message type “Nous vous répondrons bientdt en privé.” et notifier un humain. Implémentez une
route d'erreur sur le module OpenAl pour capturer ¢ca. De méme, si Facebook renvoie une erreur sur le
POST du commentaire (quota ou autre), loggez-la bien dans la sheet et éventuellement dans un canal
d'alerte.

- Livrables jour 4 : Mécanisme de déduplication en place et testé (plusieurs runs ne dupliquent pas les
réponses) 20, logging opérationnel (vérifié dans Google Sheet ou Data Store), scénario plus robuste
aux erreurs (tests manuels faits en provoquant volontairement une erreur si possible, par exemple en
coupant internet pour voir le retry).

Jour 5 - Tests réels et déploiement pilote : (~8h)

- Test en conditions réelles : Si possible, activez 'automate sur une petite échelle. Par exemple,
choisissez une de vos publicités en cours et laissez le scénario tourner dessus uniquement. Observez
pendant une journée. Vous pouvez aussi poster vous-méme quelques commentaires depuis un autre
compte pour déclencher des réponses et voir la réactivité. Vérifiez que : - les commentaires publics
s'affichent correctement sous les posts sponsorisés, - les messages privés arrivent bien (regardez dans
la messagerie de la page “Boite de réception” si le message est envoyé), - aucun commentaire
organique n'est traité par erreur (consultez les logs pour voir les post_id des commentaires traités,
assurez-vous que ce sont bien des IDs de pubs).

- Mettez en place le polling de secours : Méme si vous utilisez le webhook, il est prudent d'avoir un
scénario de repli. Créez un second scénario Make, programmé toutes les 30 minutes, qui va lister les
derniers posts/commentaires et vérifier s'il y a eu des nouveaux commentaires non traités (en
comparant avec le Data Store des traités) 57 58 . Ceci couvrira le cas ou le webhook manquerait un
événement (ca peut arriver en cas de pic ou de probleme réseau). La logique : pour chaque post
publicitaire connu (vous pouvez stocker leurs IDs en variable ou Data Store), faites un GET comments
trié par date desc, prenez ceux des 30 derniéres minutes, et traitez-les si pas déja traités. Ce scénario
fallback doit faire la méme chose (passer par I'Al et répondre) mais il tournera en arriere-plan et ne fera
souvent rien si le webhook marche bien.

- Monitoring en live : Surveillez activement votre Google Sheet de log ou les notifications pendant ce
jour test. Assurez-vous qu'aucune erreur critique n‘apparait. Par exemple, si vous voyez des erreurs
(#230 pages_messaging) dans le log, c'est que la permission ou le contexte Messenger manque -
corrigez immédiatement (peut-étre 'utilisateur de test n'était pas autorisé car app en dev mode). Si tout
est vert, passez a I'échelle.

- Livrables jour 5 : Webhook validé en production (réception dévénements confirmée), scénario

12

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2.%20%E2%9C%85%20Impl%C3%A9menter%20SHA,generation
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,%5B60%2C%20600%2C%201800%5D
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3,3x
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,Process%20new%20comments

fallback de polling configuré, au moins 5-10 commentaires réels traités automatiquement avec succes
(vérifiés) 59 , aucune interférence avec les posts non sponsorisés constatée.

Jour 6 - Optimisation performance et montée en charge : (~5-6h)

- Maintenant que l'automate fonctionne, simulez une charge élevée pour voir comment il tient. Si vous
pouvez, utilisez 'API ou un script pour poster massivement des commentaires (par ex. 50 commentaires
espacés de quelques secondes) sur un post test 60 . Observez si Make parvient a tous les traiter en
temps voulu. Mesurez le temps de réponse moyen entre la publication d'un commentaire et la réponse
de l'agent - cela devrait idéalement rester bas (< quelques secondes avec webhook). Si vous constatez
un engorgement (file d'attente), notez jusqu'a combien ¢a tient.

- Vérifiez les headers de rate limit dans les réponses de I'API Graph si possible (Make peut exposer les
en-tétes de réponse via son module HTTP avancé). Les headers comme | X-App-Usage ou X-Page-
Usage | donnent une idée de la consommation de quota. Si vous voyez ces chiffres approcher 100%,
envisagez de ralentir la fréquence de certaines opérations ou de demander une augmentation de quota
a Facebook (peu probable sauf trés gros volumes) 61 .

- Testez des cas particuliers : par exemple, un commentaire est supprimé par un modérateur pendant
que ITA prépare la réponse - dans ce cas l'appel POST comment retournera une erreur 404. Votre
scénario gére-t-il cela proprement (log sans crasher) ? Autre cas : un méme utilisateur commente deux
fois de suite le méme post avec le méme contenu - le Data Store doit éviter la double réponse. Testez-le.
Aussi, testez le cas limite Messenger : un utilisateur commente “info”, regoit un DM, puis commente a
nouveau “info” sur le méme post. Votre bot devrait répondre publiquement qu'il ne peut pas renvoyer
un deuxiéme DM (puisque une seule fois autorisée), ou au moins ne pas envoyer un second DM.
Implémentez une régle pour ca (par ex, stocker dans le Data Store qu'un DM a déja été envoyé pour ce
commentateur sur ce post) 62 63,

- Livrables jour 6 : Rapport de tests de charge (par ex. “20 commentaires en rafale traités en 1min, OK"),
ajustements faits si nécessaires (ajout d'un Sleep de 1s entre chaque traitement pour lisser, par
exemple), validation des scénarios d'erreurs extrémes (commentaire supprimé, double DM évité) 64 .

Jour 7 - Documentation et passage en production finale : (~4h)

- Rédigez une documentation technique résumant l'architecture : décrivez le flux (depuis la réception
d'un commentaire jusqua la réponse), listez les modules Make et leur configuration principale, les
identifiants des Data Stores, etc. Incluez un schéma logique si possible 65 . Documentez aussi les
permissions utilisées et pourquoi (par ex: pages_read_user_content pour lire les commentaires,
pages_manage_engagement pour répondre, pages_messaging pour DM) en cas d'audit futur 6 4 .

- Etablissez un runbook opérationnel : que faire si lautomatisation tombe en panne ? (ex: si plus de
réponses, vérifier le token ou le statut du webhook). Qui contacter chez Facebook si besoin, etc.
Mentionnez la procédure de renouvellement du token tous les ~60 jours (ou revalidation OAuth) pour
ne pas l'oublier 67 68 .

- Mettez en place un monitoring a long terme : par exemple, connectez Make a un Slack de votre
équipe support pour poster un bref message chaque fois que X commentaires ont été traités ou si une
erreur critique a lieu. Cela gardera tout le monde informé.

- Lancement graduel : Pour commencer, activez 'automatisation sur un périmetre restreint (quelques
campagnes publicitaires pilotes) pendant quelques jours (soft launch) ¢ . Analysez les retours : est-ce
que les utilisateurs réagissent bien ? Y a-t-il des retours négatifs ou des cas ou l'agent aurait mal
répondu ? Une fois la confiance établie, élargissez a toutes les publicités (full launch).

- Livrables jour 7 : Documentation compléte préte (peut étre partagée sur Notion/Confluence pour
votre équipe) 70, checklist de mise en production remplie (tokens sécurisés, app en live mode, quotas
ok, monitoring en place) 71 , et décision de Go Live prise pour 100% des cas d'usage.

Ce plan étalé vous permet de développer, tester et ajuster progressivement votre agent
automatique, et d'arriver en une semaine a une solution fiable et documentée.

13

file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=10%2B%20real%20comments%20processed%20,log
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,500%20commentaires%20simul%C3%A9s
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Webhook%20timeout%20%E2%86%92%20fallback%20polling
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Comment%20disappear%20,error
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Exemple%20d%E2%80%99architecture%20d%E2%80%99un%20workflow%20de,mod%C3%A9ration%20humaine%2C%20la%20phase%20de
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=pages_manage_engagement%20Graph%20API
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=match%20at%20L445%20pages_messaging%20Graph,API
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Data%20Store%20daily%20export%20to,Google%20Sheets
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Top%20errors%20,permission%2C%20404%20post%20deleted
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=5
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4,recovery

10. Conclusion et guide tutoriel final

En suivant les étapes ci-dessus, vous disposerez d'un guide complet pas-a-pas pour créer un agent
automatisé répondant aux commentaires de vos publicités Facebook via Make et ChatGPT. Nous avons
couvert la création et configuration de l'app Facebook (accés API, Webhooks, permissions OAuth), la
mise en place du déclencheur en temps réel des nouveaux commentaires, la génération d’'une réponse
contextualisée par IA, la logique de filtrage pour envoi public ou privé, l'utilisation des bons endpoints
Graph API pour publier ces réponses, ainsi que les aspects de robustesse (anti-doublon, gestion
d'erreurs, quotas) et de monitoring continu. Chaque section du tutoriel apporte des exemples concrets
(extraits d’API, URLs) et des bonnes pratiques pour une implémentation professionnelle.

En intégrant ce blueprint dans votre documentation technique, vous pouvez déployer 'automatisation
en toute confiance. Le résultat attendu est un assistant virtuel opérationnel 24/7 qui répond
rapidement aux prospects sur vos publicités, améliore I'engagement tout en vous faisant gagner un
temps précieux. N'oubliez pas de maintenir votre systéme (mise a jour des tokens, suivi des
changements de I'API Meta, ajustements de prompt AI) pour qu'il reste efficace dans la durée. Bonne
implémentation !

Sources : Les informations ci-dessus s'appuient sur la documentation officielle Meta (Graph API,
Webhooks, Messenger) ainsi que des retours d'expérience de la communauté Make et des guides
spécialisés en automatisation marketing 72 36 33 . Des références précises ont été citées tout au long
du document pour approfondir chaque aspect technique. Ce tutoriel se veut complet et directement
exploitable pour batir votre propre solution d'auto-réponse aux commentaires Facebook Ads. Bonne
chance dans votre projet d'automatisation !

1 4 7 8 9 10 13 15 17 18 19 20 35 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

63 64 66 67 68 69 70 71 Tuesun expertsenior en automatisation API (Meta.pdf
file://file-RFB3sE8F6NPjkK4m2vssND

2 31 37 38 72 Automatisation avancée avec Cloudinary et la plateforme Meta (Facebook).pdf
file://file-79z1sMDgExdw2xukjcTvW

3 14 21 22 23 24 25 26 27 28 29 30 36 39 40 41 42 43 4 45 46 65 Conception d'un

Blueprint Make pour un Agent GPT Automatique sur Facebook Ads.pdf
file://file-WkFpqskKYqPyMfwLBhthDP

5 facebook php sdk - send private replies keep asking for pages_messaging while my token already
have that permission - Stack Overflow
https://stackoverflow.com/questions/57441427/send-private-replies-keep-asking-for-pages-messaging-while-my-token-
already-have

6 11 12 développe tous les points qui peuvent I'étre cloud.pdf
file://file-AWYUEHAJAUFySAXz4QVhTF

16 How to fetch dark or unpublished posts? - Meta for Developers
https://developers.facebook.com/community/threads/372511200112891/

32 Private Replies - Messenger Platform - Meta for Developers

https://developers.facebook.com/docs/messenger-platform/discovery/private-replies/

33 34 Instagram: Auto Private Replies

https://respond.io/help/instagram/instagram-auto-private-replies

14

file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Pour%20mettre%20en%20place%20une,L%E2%80%99utilisateur%20authentifi%C3%A9
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Facebook%20Messenger%C2%A0%3A%20Si%20vous%20souhaitez,de%20l%E2%80%99utilisateur%20et%20avoir%20les
https://respond.io/help/instagram/instagram-auto-private-replies#:~:text=Limitation
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,com
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=match%20at%20L445%20pages_messaging%20Graph,API
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,https%3A%2F%2Fwww.make.com%2Foauth%2Fcallback%2Fmeta
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,body.access_token
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2,API%2C%20Webhooks
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,subscribe
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=%F0%9F%91%89%20Je%20veux%20une%20m%C3%A9thode,%E2%86%92%20le%20post%20source
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,Store%20table%20processed_comments
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2.%20%E2%9C%85%20Impl%C3%A9menter%20SHA,generation
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=GET%20%2F
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=5,woff2%20recommand%C3%A9
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=7
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=curl%20
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Jour%202%20%3A%20Integration%20Make,6h
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=POST%20%2F
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,%5B60%2C%20600%2C%201800%5D
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=3,3x
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=,Process%20new%20comments
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=10%2B%20real%20comments%20processed%20,log
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1,500%20commentaires%20simul%C3%A9s
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=2
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Webhook%20timeout%20%E2%86%92%20fallback%20polling
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Comment%20disappear%20,error
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=pages_manage_engagement%20Graph%20API
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Data%20Store%20daily%20export%20to,Google%20Sheets
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=Top%20errors%20,permission%2C%20404%20post%20deleted
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=5
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=1
file://file-RFB3sE8F6NPjkK4m2vssND#:~:text=4,recovery
file://file-RFB3sE8F6NPjkK4m2vssND
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=faut%20cr%C3%A9er%20une%20application%20Facebook,authentifi%C3%A9%20doit%20%C3%AAtre%20admin%20ou
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Bonnes%20pratiques%C2%A0%3A%20Facebook%20peut%20%C3%AAtre,Par
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=,publi%C3%A9%20au%20nom%20de%20la
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=placeholders%20%20%28par%20%20ex,Par
file://file-79z1sMDgExdw2xuJkjcTvW#:~:text=Pour%20mettre%20en%20place%20une,L%E2%80%99utilisateur%20authentifi%C3%A9
file://file-79z1sMDgExdw2xuJkjcTvW
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Tokens%20d%E2%80%99acc%C3%A8s%20Facebook%C2%A0%20%3A%20En,ou%20des%20connexions%20partag%C3%A9es%20de
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=sp%C3%A9cifier%20la%20page%20et%20%C3%A9ventuellement,ayant%20son%20module%20Watch%20Comments
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=%C3%89viter%20les%20boucles%20sur%20vos,le%20%20sc%C3%A9nario%20%20ne
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=communaut%C3%A9%20Make%20souligne%20cette%20n%C3%A9cessit%C3%A9,la%20collecte%20des%20commentaires
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=module%20de%20type%20Polling%20,votre%20agent%20de%20commentaires%20historiques
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Module%20OpenAI%20%E2%80%93%20Create%20a,3.5%20est%20plus%20rapide
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=La%20qualit%C3%A9%20du%20prompt%20envoy%C3%A9,optimis%C3%A9%20pour%20ce%20cas%20d%E2%80%99usage
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Inclure%20%20des%20%20consignes,de%20langage%20et%20la%20bri%C3%A8vet%C3%A9
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=contient%20des%20informations%20%20,au%20lieu%20de%20dire%20qu%E2%80%99il
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Exemples%20de%20prompt%C2%A0%3A
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Personnalisation%C2%A0%20%3A%20%20Demandez%20,convivial%20sans%20%C3%AAtre%20trop%20formel
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=%C2%AB%C2%A0Le%20commentaire%20suivant%20a%20%C3%A9t%C3%A9,R%C3%A9ponse%20%3A%C2%A0%C2%BB
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Facebook%20Messenger%C2%A0%3A%20Si%20vous%20souhaitez,de%20l%E2%80%99utilisateur%20et%20avoir%20les
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Temporisation%20,les%20r%C3%A9ponses%20un%20peu%20moins
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=API%20%20renvoie%20%20une,d%E2%80%99intervalle%20en%20cas%20d%E2%80%99%C3%A9chec%20temporaire
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=chemin%20de%20rattrapage%20en%20cas,des%20retries%20automatiques%20sur%20les
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=gratuit%20de%20Make%20limite%20aussi,%E2%80%9C%F0%9F%91%8D%E2%80%9D%20qui%20n%E2%80%99appellent%20pas%20de
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=le%20sc%C3%A9nario%20pour%20limiter%20les,les%20atteindre%20en%20mode%20polling
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Facebook%20%3A%20L%E2%80%99API%20Graph%20impose,depuis%20la
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Temporisation%20,peut%20aussi%20rendre%20les%20r%C3%A9ponses
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=arrivent%20en%20m%C3%AAme%20temps%20%28p,courte%20pour%20ne%20pas%20ralentir
file://file-WkFpqskKYqPyMfwLBhthDP#:~:text=Exemple%20d%E2%80%99architecture%20d%E2%80%99un%20workflow%20de,mod%C3%A9ration%20humaine%2C%20la%20phase%20de
file://file-WkFpqskKYqPyMfwLBhthDP
https://stackoverflow.com/questions/57441427/send-private-replies-keep-asking-for-pages-messaging-while-my-token-already-have#:~:text=%27GET%27%2C%20%27%2FpageID%3Ffields%3Daccess_token%27%2C%20array,access_token
https://stackoverflow.com/questions/57441427/send-private-replies-keep-asking-for-pages-messaging-while-my-token-already-have
https://stackoverflow.com/questions/57441427/send-private-replies-keep-asking-for-pages-messaging-while-my-token-already-have
file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=,expires%20%E2%86%92%20page%20token%20also
file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=Step%202%3A%20Submit%20App%20for,Review
file://file-AWYUEHAjAUFySAXz4QvhTF#:~:text=Meta%20evaluates%3A%201,2%E2%80%935%20days
file://file-AWYUEHAjAUFySAXz4QvhTF
https://developers.facebook.com/community/threads/372511200112891/#:~:text=Developers%20developers,Unbelievable
https://developers.facebook.com/community/threads/372511200112891/
https://developers.facebook.com/docs/messenger-platform/discovery/private-replies/#:~:text=Developers%20developers,pages_messaging%20permission%3B%20The%20ID
https://developers.facebook.com/docs/messenger-platform/discovery/private-replies/
https://respond.io/help/instagram/instagram-auto-private-replies#:~:text=Limitation
https://respond.io/help/instagram/instagram-auto-private-replies#:~:text=Only%20one%20private%20message%20can,be%20sent%20per%20comment
https://respond.io/help/instagram/instagram-auto-private-replies

	Automatisation des réponses aux commentaires Facebook Ads avec Make (Integromat) et ChatGPT
	1. Connexion à Facebook via Make : Création de l’application et tokens
	2. Déclencheur d’automatisation : surveiller les commentaires des publicités
	3. Détection et prévention des doublons
	4. Réponse intelligente via ChatGPT (OpenAI)
	5. Bascule en message privé (Messenger) pour certains mots-clés
	6. Publication de la réponse (commentaire public vs DM)
	7. Gestion des erreurs, quotas et limitations (anti-spam)
	8. Monitoring et journalisation des activités
	9. Plan d’implémentation sur 7 jours
	10. Conclusion et guide tutoriel final

